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Abstract. In this paper, we compare the values of the resonant frequency f0 of free decaying oscillations 
computed according to the parametric OMI method (Optimization in Multiple Intervals) and 
nonparametric DFT-based (discrete Fourier transform) methods as a function of the sampling frequency. 
The analysis is carried out for free decaying signals embedded in an experimental noise recorded for 
metallic samples in a low-frequency resonant mechanical spectrometer. The Yoshida method (Y), the 
Agrež method (A), and new interpolated discrete Fourier transform (IpDFT) methods, that is, the 
Yoshida-Magalas (YM) and (YMC) methods developed by the authors are carefully compared for the 
resonant frequency f0 = 1.12345 Hz and the logarithmic decrement, δ  = 0.0005. Precise estimation of the 
resonant frequency (Youngs’ modulus ~ f0 

2 ) for real experimental conditions, i.e., for exponentially 
damped harmonic signals embedded in an experimental noise, is a complex task. In this work, various 
computing methods are analyzed as a function of the sampling frequency used to digitize free decaying 
oscillations. The importance of computing techniques to obtain reliable and precise values of the resonant 
frequency (i.e. Young’s modulus) in materials science is emphasized. 

 
 
1. Introduction  
High-resolution mechanical spectroscopy HRMS [1, 2, 12] provides excellent estimation of Young’s 
modulus E, which is proportional to the square of the resonant frequency of harmonically oscillating 

sample, E ~
2

0f  [3-6]. This paper focuses on the performance and the accuracy of discrete Fourier 

transform-based (DFT-based) methods [19-22] to obtain the resonant frequency 0f  from 

exponentially damped harmonic oscillations (i.e., free decaying oscillations) recorded in a low-
frequency mechanical spectrometer [7]. The parametric OMI method (Optimization in Multiple 
Intervals) [8-12] and interpolated discrete Fourier transform (IpDFT) techniques [1, 2, 12-16] are used 
to analyze exponentially damped harmonic oscillations characterized by the following parameters: the 
length of the free decaying signal L, the sampling frequency Sf , the signal-to-noise ratio S/N, phase, 

the resonant frequency 0f , and the damping level (i.e. the logarithmic decrement, δ ). The discrete 

Hilbert transform-based methods are not discussed in this work [6, 17, 19].  
     The OMI method [8] and IpDFT methods [12-15] compute jointly the logarithmic decrement and 
the resonant frequency. Therefore the problem of the computations of the δ  and the 0f  cannot be 
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discussed separately. That is why, the results concerning the δ  and the 0f  are reported in this volume 

in two Parts.  
     The effect of the Zero-Point Drift (ZPD) [11, 12, 17, 18] on computations of the resonant frequency 
is not discussed in this work. The OMI method and the IpDFT methods are not affected by the 
presence of constant offsets, unlike the classical algorithms reported in the literature [3, 4, 8]. A new 
road to high-resolution mechanical spectroscopy takes into consideration the presence of the ZPD for 
all damping levels and different lengths of the signal [7, 12, 18]; these results will be reported 
elsewhere. 
   
 
2. Resonant Frequency 
 
The exponentially damped time-invariant harmonic oscillations embedded in an experimental noise 

)(twε  can be described using the digitized data )(tAi  and it  from free decaying signal )(tA  [1, 2]: 

 

dcttfeAtA w
f t +++= − )()2cos()( 00
0 εϕπδ ,                                    (1) 

 
where 0A  is the maximal strain amplitude of a sample mounted in a mechanical spectrometer, t  is  

a continuous time in seconds, −π < ϕ  ≤ π is the phase of the signal )(tA  in radians, 0f  is the resonant 

frequency, and dc is an offset. The noise )(twε  corresponds here to the signal-to-noise ratio 

S/N= 32 dB [1, 2, 8, 10, 12].  
     It can be shown that the resonant frequency 0f  can be directly computed from the DFT spectra:  
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The R  parameter is defined by Yoshida [13]:  
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where )(),(),(),( 4321 sFsFsFsF  state for the magnitude of DFT bins [1, 2, 12, 13, 15]. 

     The Yoshida-Magalas methods (YM) and (YMC) [1, 2, 12] and the original Yoshida method (Y) 
[13] use four DFT bins ( )(),(),(),( 4321 sFsFsFsF ) and a rectangular window [19, 22]. The YM 

method uses four optimal values of the DFT bins whereas the YMC differs from the YM method by 
using a complete number of oscillations. The Yoshida method is described in [13]. The Agrež method 
(A) uses three DFT bins [14] and the Hann window [20, 22]. The wavelet transform gives too poor 
frequency resolution [16, 23-26], and is not discussed in this work. 
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3. Results and Discussion 
 
The results of computing the resonant frequency 0f  according to Eqs. (2, 3) by the YM, the YMC 

[1, 2, 12], and the Y methods [13] are carefully compared here with the results obtained according to 
the A method [14] and the parametric OMI method [8-12]. The results shown in Figs. 1 - 4 confirm 
that the OMI method can be considered as the ‘gold standard’ [1, 2, 7-12, 15].  

 
     Figure 1 shows dispersion of computed 0f  values obtained for 100 free decaying oscillations 

embedded in an experimental noise as a function of the length of signals, L, (in seconds and/or as  
a function of the number of oscillations Losc) [1, 2, 10-12] for the sampling frequency Sf = 1 kHz. The 

dispersion of computed 0f  values obtained for the sampling frequency Sf = 6 kHz is illustrated in 

Fig. 3. The results obtained for 100 different free decaying oscillations (δ  = 5×10-4, 0f = 1.12345 Hz, 

S/N = 32 dB) computed according to the following methods: OMI, YM, YMC, A, and Y are vertically 
plotted in Figs. 1, 2 and  Figs. 3, 4 for Sf = 1 kHz and Sf = 6 kHz, respectively.  

     The OMI unequivocally outperforms IpDFT methods for all lengths of free decaying signals. The 
Yoshida method [13] usually generates the highest dispersion in 0f  points (see Figs. 1-4.) It is 

noteworthy that the dispersion in 0f  values increases with decrease in the length of free decaying 

signals. This observation is valid for all IpDFT methods and all damping levels. The Yoshida-Magalas 
YM method returns the smallest dispersion in experimental points among all tested IpDFT methods. 
The point we should like to emphasize is that computed 0f  values are biased for signals that are too 

short (Figs. 1(a), 2(a), 2(c), 3(a), 4(a), 4(c).)   
 
     Figures 2 and 4 show variation of the minimal min

of
γ  and the maximal max

of
γ  relative errors of 

the resonant frequency 0f  for two sampling frequencies: Sf = 1 kHz and Sf = 6 kHz, respectively. 

The computed values of the 0f are confined within two lines: min
of

γ  and max
of

γ  corresponding to 

the specific method. The method which returns the best 0f  values returns simultaneously the best 

results for the logarithmic decrement (see Part I in this volume.)  
     An increase in the sampling frequency Sf  from 1 kHz to 4 kHz reduces relative errors by 5-15 %. 

Further increase in the sampling frequency returns slightly better results only.  
 
     It is concluded that the performance of tested methods is as follows: (1) OMI – it is worthwhile to 
reiterate the fact that the OMI is considered as the ‘gold standard’, (2) the Yoshida-Magalas YM,  
(3) the Yoshida-Magalas YMC, (4) the Agrež A, and (5) the Yoshida Y. The results shown in Figs.  
1-4 suggest that for short and very short signals only the OMI and the YMC can be recommended. The 
Agrež method, A, provides good estimation of the resonant frequency for low damping level only. 
For medium and higher damping levels it returns low quality unacceptable results. That is why the  
A method can only be used in the computations of the 0f  for relatively narrow span of low damping 

level. It is important to emphasize that in all investigated cases the Yoshida-Magalas YM method is 
slightly better as compared to the Agrež method. The potential use of the Agrež method [14] in 
mechanical spectroscopy and other spectroscopic techniques will be limited since it yields wrong 
results for the logarithmic decrement, δ . 
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Figure 1. The effect of the sampling frequency Sf = 1 kHz on dispersion of 100 values of the resonant frequency 

0f  computed according to OMI, YM, YMC, A, and Y methods as a function of the length of free decaying signals 

(i.e. the number of oscillations Losc .)  (a) Losc = 5, 10, 15, (b) Losc = 20, 25, 30,  (c) Losc = 40, 50, 60, 70,  (d)  
Losc = 80, 90, and 100.  

Computed values of the 0f , displayed on vertical plots, correspond to a set of 100 different free 

decaying noisy oscillations (S/N = 32 dB) characterized by the same value of the δ  = 0.0005 and the resonant  

frequency 0f  = 1.12345 Hz. 
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Figure 2. The effect of the sampling frequency Sf = 1 kHz on the minimal 

min0f
γ  and the maximal max0f

γ   

relative errors obtained for computations of the resonant frequency 0f  shown in Fig. 1.  

(a) , (c)  Losc = 5, 10, 15;   (b), (d)  Losc = 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100.  
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Figure 3. The effect of the sampling frequency Sf = 6 kHz on dispersion of 100 values of the resonant frequency 

0f  computed according to OMI, YM, YMC, A, and Y methods as a function of the length of free decaying signals 

(i.e. the number of oscillations Losc .)   (a) Losc = 5, 10, 15, (b) Losc = 20, 25, 30,  (c) Losc = 40, 50, 60, 70,  (d) 
Losc = 80, 90, and 100.  

Computed values of the 0f , displayed on vertical plots, correspond to a set of 100 different free decaying noisy 

oscillations (S/N = 32 dB) characterized by the same value of the δ  = 0.0005 and the resonant frequency 

0f  = 1.12345 Hz. 
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Figure 4. The effect of the sampling frequency Sf = 6 kHz on the minimal 
min0f

γ  and the maximal max0f
γ  

relative errors obtained for computations of the resonant frequency 0f   shown in Fig. 3.  

(a) , (c)  Losc = 5, 10, 15;   (b), (d)  Losc = 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100. 
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4. Conclusions 
The results are primarily reported here to highlight new methods to compute the resonant frequency, 

0f , and the logarithmic decrement, δ , in resonant high-resolution mechanical spectroscopy, HRMS.  
The performance of different methods and algorithms to compute the resonant frequency 
for low damping level (e.g. δ = 5×10-4 ) is listed in the following order: (1) the OMI, (2) the Yoshida-
Magalas YM, (3) the Yoshida-Magalas YMC, (4) the Agrež A, and finally (5) the Yoshida Y. The 
Yoshida-Magalas YM method [1, 2] outperforms other IpDFT methods. The YM method yields the 
smallest dispersion in experimental points of the resonant frequency for different lengths of free 
decaying oscillations and different sampling frequencies. The effect of the sampling frequency on 
precision in the computations of the resonant frequency and the logarithmic decrement has received 
scant attention to date [8] and deserves more. 
     The parametric OMI method is considered as the ‘gold standard’ in low-frequency high-resolution 
mechanical spectroscopy, HRMS. The point we should like to emphasize is that the sampling 
frequency is a key factor to reduce dispersion of experimental points computed according to the OMI 
and IpDFT methods. It is demonstrated that the sampling frequency Sf = 6 kHz readily yields better 

results as compared to usually usedSf = 1 kHz in low-frequency mechanical spectrometers operating 

around the resonant frequency 0f ≈ 1 Hz.  

     To conclude, the OMI method (Optimization in Multiple Intervals) and the Yoshida-Magalas YM 
method are recommended to compute the resonant frequency from the exponentially damped time-
invariant harmonic oscillations embedded in an experimental noise. It is not difficult to show, by 
means of the experimental results reported in [1, 2] and the results described in this volume that the 
OMI and the YM methods pave the way toward high-resolution mechanical spectroscopy, HRMS. 
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