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Abstract. The comparison between different methods used to compute the logarithmic decrement in 
high-resolution mechanical spectroscopy (HRMS) is analyzed. The performance of parametric OMI 
method (Optimization in Multiple Intervals) and interpolated discrete Fourier transform (IpDFT) methods 
are investigated as a function of the sampling frequency used to digitize free decaying oscillations in low-
frequency resonant mechanical spectrometers. It is clearly demonstrated that a new Yoshida-Magalas 
(YM) method is the most powerful IpDFT-based method which outperforms the standard Yoshida (Y) 
method and other DFT-based methods. Four IpDFT methods and the OMI method are carefully analyzed 
as a function of the sampling frequency. The results presented in this work clearly show that the relative 
error in the estimation of the logarithmic decrement depends both on the length of free decaying signal 
and on the sampling frequency. The effect of the sampling frequency was not yet reported in the 
literature. The performance of different methods used in the computations of the logarithmic decrement 
can be listed in the following order: (1) the OMI, (2) the Yoshida-Magalas YM, (3) the Yoshida-Magalas 
YMC, and finally (4) the Yoshida Y. 

 
 
1. Introduction  
High-resolution mechanical spectroscopy HRMS [1-3] requires new computing tools and algorithms 
to determine the logarithmic decrement δ  and the resonant frequency 0f  from free decaying 

oscillations with high precision and very low dispersion in experimental points. In addition, it is also 
expected that computations of the δ and 0f  will be independent on small external perturbations (i.e. 

the ZPD effect [7, 9], defined as the deployment of the center of damped harmonic oscillations) while 
computing time must be reasonably short. These, frequently contradictory requirements, are difficult 
to be fulfilled [1-20]. These problems are tackled in this work. Computations of the logarithmic 
decrement δ  will be analyzed here as a function of the length of free decaying oscillations for two 
different sampling frequencies: 1 kHz (usually used in low-frequency resonant mechanical 
spectrometers) and 6 kHz (it will be demonstrated here that Sf = 6 kHz yields the best results for low-

frequency mechanical spectrometers operating around the resonant frequency 0f ≈ 1 Hz). It should be 

emphasized that computation techniques used in HRMS depend on too many parameters, which is 
why the computational problem is a multi-dimensional task [1-13].  

6th EEIGM International Conference on Advanced Materials Research IOP Publishing
IOP Conf. Series: Materials Science and Engineering 31 (2012) 012018 doi:10.1088/1757-899X/31/1/012018

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

To elucidate this problem the effect of the length of the signal L and the sampling frequency Sf  on 

computed values of the logarithmic decrement are investigated.  
   

HRMS can provide better insight into a number of relaxation processes involving e.g. interaction of 
dislocations with mobile points defects (Dislocation-Enhanced Snoek Effect DESE and Snoek-Köster 
relaxation in bcc metals and alloys [14-20]), Bordoni relaxations, study of phase transitions and  
a number of transient phenomena frequently observed in mechanical loss measurements of different 
materials. It is noted that the OMI method (Optimization in Multiple Intervals) [1-8] and the Yoshida-
Magalas YM method can be successfully used to analyze free decaying oscillations biased by the ZPD 
effect [7, 9] which accompanies phase transitions and dislocation-induced phenomena.  
 
 
2. Results and Discussion 
 
The exponentially damped time-invariant harmonic oscillations (free decaying oscillations, )(tA ) 

embedded in an experimental noise εw(t) can be described using the digitized data )(tAi  and it  

acquired from free decaying signal [1, 2]: 
 

                                             dcttfeAtA w
f t +++= − )()2cos()( 00
0 εϕπδ ,                                      (1) 

 
where 0A  is the maximal strain amplitude of a sample mounted in a mechanical spectrometer, t  is  

a continuous time in seconds, −π < φ ≤ π is the phase of the signal )(tA  in radians, and dc  is an 
offset. The noise εw(t) corresponds here to the signal-to-noise ratio S/N= 32 dB [1-7].  

The logarithmic decrement δ  can be computed from Eq. (2) [12] 
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where )(),(),(),( 4321 sFsFsFsF denote the magnitude of DFT bins [1-3, 12, 13, 21]. 

 
Three new interpolated discrete Fourier transform (IpDFT) methods: the Yoshida-Magalas methods 

(the YM, the YMC, and the YL [1-3]) and the original Yoshida method (Y) [12] use four DFT bins 
( )(),(),(),( 4321 sFsFsFsF ) and a rectangular window [21]. The YL method differs from the Y 

method by the use of a fixed length of the signal )(tA  [1]. The YM method uses four optimal values 
of the DFT bins [1-3] whereas the YMC differs from the YM method by using a complete number of 
oscillations [1-3]. The Yoshida method [12] and other IpDFT methods were recently reviewed in [13]. 
The systematic errors induced by spectral leakage and a picket fence effect were also discussed in 
[13]. Detailed mathematical description of IpDFT methods used in this work (i.e. the YM, the YMC, 
and the YL) will be described elsewhere.  
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The performance of four IpDFT methods and the OMI method [1-8] for low damping 
level (δ = 5×10-4, 0f = 1.12345 Hz) is analyzed here for two sampling frequencies: Sf = 1 kHz and 

Sf = 6 kHz. It should be emphasized that the effect of the sampling frequency, Sf , was not 

investigated in the literature [4, 8]. 
 
The results of computing the logarithmic decrement δ  for a set of 100 free decays are reported here 

as a function of the length of free decaying signals L [1-3, 5, 7] (in seconds and/or as a function of the 
number of oscillations Losc) for two sampling frequencies, Sf . Each free decaying signal )(tA  was 

embedded in statistically different experimental noise defined by the same S/N ratio. The results of 
computations obtained from the OMI and IpDFT methods are offset independent [3, 7].  

Figures 1, 2, 5, and 6 demonstrate that the OMI method (the results are illustrated by the 1st set of 
computed δ  values vertically plotted from the left side) outperforms IpDFT methods: the YM, the 
YM C, the YL , and the Y (the 2nd – 5th set of computed δ  values vertically plotted) for all lengths of 
analyzed signals )(tA . It should be emphasized that the Yoshida method generates the highest 

dispersion in δ  values and the highest relative error δγ (Figs. 2 and 6), the highest minimal minδγ , 

and the maximal maxδγ  relative errors (Figs. 3, 7). The Y method returns the highest standard 

deviation too (Figs. 4, 8). It is convincingly demonstrated that the precision in computing the 
logarithmic decrement depends on the length of the signal while each method shows different 
performance. The Yoshida method returns strong dispersion for some well defined lengths of the 
signal )(tA  as a natural consequence of the relationship between the sampling and the resonant 
frequencies, and the fixed number of data points used in the algorithm [12] (e.g. Figs. 1, 5). That is 
why the sampling frequency Sf  is a key factor which affects the performance of the Yoshida method, 

Y.  
Computations of the δ for too short oscillations inevitably returns very strong dispersion (Figs. 

1(a), 2(a) and 5(a), 6(a)). Is noteworthy that among four IpDFT methods the best performer is always 
the Yoshida-Magalas YM method [1-3]. Figures 1, 2 and 5, 6 indicate that the YMC method should be 
used to compute the δ  from short free decaying signals.  

Figures 3 and 7 illustrate the performance of the IpDFT methods and the OMI method defined by 
the smallest relative error δγ , the smallest minimal minδγ  and the maximal maxδγ  relative error in 

the estimation of the δ, that is, the smallest dispersion of experimental points in mechanical loss 
measurements.  

 
An increase in the sampling frequency, from 1 kHz to 4 kHz, reduces the dispersion by around 

50 %. Further increase up to 6 kHz yields the best estimation for the δ  for all lengths of the free 
decaying signals and generates the smallest computing errors (compare Figs. 1 - 4 and Figs. 5 - 8).        

 
 

3. Conclusions 
 
The performance of different methods to compute the logarithmic decrement for low damping level  
(δ = 5×10-4 ) can be listed in the following order: (1) the OMI, (2) the Yoshida-Magalas YM, (3) the 
YMC, and the Yoshida (Y). The YM method outperforms other IpDFT methods [1-3, 12, 13] including 
the classic Yoshida method [12]. The YM method yields the smallest dispersion in experimental 
points of the logarithmic decrement δ  for different lengths of free decaying oscillations and different 
sampling frequencies. The parametric OMI method is considered as the ‘gold standard’ in low-
frequency high-resolution mechanical spectroscopy HRMS [1, 2]. It is emphasized that the sampling 
frequency is an important factor to obtain the  lowest  dispersion  of  experimental  points,  that  is,  the  

6th EEIGM International Conference on Advanced Materials Research IOP Publishing
IOP Conf. Series: Materials Science and Engineering 31 (2012) 012018 doi:10.1088/1757-899X/31/1/012018

3



 
 
 
 
 
 

 (a) 

5 7 10

0

5

10

15

20
x 10

-4

δ  
 x
 1

04

L
osc

 

 

OMI
YM
YM

C
Y

L
Y

4.45 6.23 8.90 t [s]

 
(b) 

 
(c) 

40 45 50 55 60

4.8

5

5.2

5.4 x 10
-4

δ  
 x
  
1
04

L
osc

 

 

t [s] 35.60 44.50 53.41

 
(d) 

 
Figure 1. The effect of the sampling frequency Sf = 1 kHz on dispersion of 100 values of the logarithmic 

decrement δ  computed according to OMI, YM, YMC, YL, and Y methods as a function of the length of free 
decaying signals (i.e. the number of oscillations Losc .)  (a) Losc = 5, 7, 10, (b) Losc = 15, 20, 25, 30, (c) Losc = 40, 50, 
60,  (d) Losc = 70, 80, 90, and 100.  
Computed values of the δ, displayed on vertical plots, correspond to a set of 100 different free 
decaying noisy oscillations (S/N = 32 dB) characterized by the same value of the δ  = 0.0005 and 

the resonant frequency 0f  = 1.12345 Hz. 
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Figure 2. The effect of the sampling frequency Sf = 1 kHz on the relative errors γδ  obtained for computations of 

the logarithmic decrement δ  shown in Fig. 1 as a function of the length of free decaying signals (i.e. the number 
of oscillations Losc .)  (a) Losc = 5, 7, 10,  (b) Losc = 15, 20, 25, 30, (c) Losc = 40, 50, 60,  (d) Losc = 70, 80, 90, and 
100.  
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Figure 3. The effect of the sampling frequency Sf = 1 kHz on the minimal minδγ  and the maximal maxδγ  

relative errors obtained for computations of the logarithmic decrement δ  shown in Fig. 1. 
(a) Losc = 5, 7, 10, 15,  (b) Losc = 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100.  

(a) 

5 7 10 15

1

2

3

4
x 10

-4

σ

L
osc

 

 

OMI
YM
YM

C

Y
L

Y

 
      (b)

20 30 40 50 60 70 80 90 100
0

5

10

x 10
-6

σ

L
osc

 

 

  
Figure 4. The effect of the sampling frequency Sf = 1 kHz on the standard deviation σ obtained for computations 

of the logarithmic decrement δ shown in Fig. 1. (a) Losc = 5, 7, 10, 15,  (b) Losc = 20, 25, 30, 40, 50, 60, 70, 80, 90, 
and 100.  
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Figure 5. The effect of the sampling frequency Sf = 6 kHz on dispersion of 100 values of the logarithmic 

decrement δ  computed according to OMI, YM, YMC, YL, and Y methods as a function of the length of free 
decaying signals (i.e. the number of oscillations Losc .)  (a) Losc = 5, 7, 10,  (b) Losc = 15, 20, 25, 30, (c)  Losc = 40, 
50, 60,  (d) Losc = 70, 80, 90, and 100.  
Computed values of the δ, displayed on vertical plots, correspond to a set of 100 different free decaying noisy 
oscillations (S/N = 32 dB) characterized by the same value of the δ  = 0.0005 and the resonant frequency 

0f  = 1.12345 Hz. 
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Figure 6. The effect of the sampling frequency Sf = 6 kHz on the relative errors γδ  obtained for computations of 

the logarithmic decrement δ  shown in Fig. 5 as a function of the length of free decaying signals (i.e. the number 
of oscillations Losc .)  (a) Losc = 5, 7, 10,  (b) Losc = 15, 20, 25, 30, (c) Losc = 40, 50, 60,  (d) Losc = 70, 80, 90, and 
100.  
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Figure 7. The effect of the sampling frequency Sf = 6 kHz on the minimal minδγ  and the maximal maxδγ  

relative errors obtained for computations of the logarithmic decrement δ  shown in Fig. 5. 
(a) Losc = 5, 7, 10, 15,  (b) Losc = 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100.  
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Figure 8. The effect of the sampling frequency Sf = 6 kHz on the standard deviation σ obtained for computations 

of the logarithmic decrement δ  shown in Fig. 5.  
(a) Losc = 5, 7, 10, 15,  (b) Losc = 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100.  
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lowest level of computing errors. It is concluded that the sampling frequency Sf = 6 kHz provides 

much better results as compared to usually used Sf = 1 kHz in low-frequency mechanical 

spectrometers operating around the resonant frequency 0f ≈ 1 Hz.  

     The OMI method and the Yoshida-Magalas YM method are recommended to compute the 
logarithmic decrement δ from exponentially damped time-invariant harmonic oscillations embedded in 
an experimental noise recorded in low-frequency mechanical spectrometers (0f ≈ 1 Hz.) This 

conclusion is valid for low damping level (δ  = 5×10-4.)    
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