
3608 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 11, NOVEMBER 2011

DFT-based Estimation of Damped Oscillation
Parameters in Low-Frequency

Mechanical Spectroscopy
Krzysztof Duda, Leszek B. Magalas, Mariusz Majewski, and Tomasz P. Zieliński, Member, IEEE

Abstract—In this paper, we analyze and compare the properties
of different well-known and also new nonparametric discrete
Fourier transform (DFT)-based methods for resonant frequency
and logarithmic decrement estimation in application to mechani-
cal spectroscopy. We derive a new DFT interpolation algorithm for
a signal analyzed with Rife–Vincent class-I windows and also pro-
pose new formulas that extend Bertocco and Yoshida methods. We
study errors of the resonant frequency and logarithmic decrement
estimation in realistic conditions that include measurement noise
and a zero-point drift. We also investigate the systematic errors
of the estimation methods of interest. A nonlinear least squares
time-domain parametric signal fitting is used to determine the
boundaries of statistical efficiency in all tests.

Index Terms—Damping estimation, discrete Fourier trans-
form (DFT), frequency estimation, interpolated DFT, logarithmic
decrement, mechanical spectroscopy, signal processing.

I. INTRODUCTION

A 1-D second-order differential equation is ubiquitous, well
known, and appealing, with a simple interpretation of

numerous physical objects, e.g., in materials science, acoustics,
and electrical engineering. In this paper, we focus on a physical
object investigated by mechanical spectroscopy and estimate
the parameters of exponentially damped harmonic oscillations
in the presence of noise and a time-dependent zero-point drift
(ZPD).

Mechanical spectroscopy is the study of time-dependent
responses of stress or strain to various external time-dependent
mechanical perturbations (e.g., impulse, quasi-static, or har-
monic) through the measurement of any of several different
moduli and compliance [1]–[4]. Conventional methods of me-
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chanical spectroscopy include low-frequency mechanical spec-
trometers, vibrating reeds, ultrasonic attenuation, various stress
and strain relaxation measurement, etc. The analysis of a free
decaying harmonic mechanical response signal obtained from
a spectrometer’s strain detector requires precise monitoring
of the response in the time domain and further numerical
treatment of the experimental data. It can be readily shown
that a free decay of natural oscillations of an anelastic solid
is exponential [1]. A detailed analysis of exponentially damped
harmonic oscillations is crucial in mechanical spectroscopy and
other spectroscopic techniques such as dielectric spectroscopy,
a multiplicity of nuclear magnetic resonance techniques, elec-
tric relaxations, etc. All of these techniques measure macro-
scopic responses due to microscopic motion of atomic, ionic,
molecular, and other relaxing entities in the materials under
study. These techniques generate experimental data that provide
information complementary and supplementary to those from
mechanical spectroscopy [2]–[4]. It might be anticipated that
each spectroscopic technique faces different experimental diffi-
culties and requires different numerical tools for data analysis.
In this paper, we confine ourselves to estimate the parameters
of exponentially damped harmonic signals embedded in noise
in the presence of a ZPD (trend) [5], [6]. In this paper, we
solve this fundamental signal processing problem for the case of
a low-frequency mechanical spectrometer (an inverted torsion
pendulum, viz., Kê’s pendulum) [1], [3].

The problem of estimating in mechanical spectroscopy the
resonant frequency f0 and the logarithmic decrement δ from
noise-free decaying oscillations biased by constant offsets
and/or time-dependent ZPDs can be (and partially has been
already) tackled by several different methods:

1) classical and Hilbert transform methods [5]–[10];
2) a fitting of discrete data to a model using a nonlinear

optimization in the time domain designed by Magalas [8];
3) fast discrete-Fourier-transform (DFT)-based methods de-

signed by Yoshida et al. [11], Bertocco et al. [12], and
Agrež [13] that are detailed in the next section and special
implementation of the Bertocco method [14];

4) a hybrid approach in which an initial estimate is found
by a classical algorithm [5], [7]–[9] or a DFT-based
estimation method and then is used as a starting point for
a nonlinear least squares (NLS) signal fitting to a model.

Other signal processing methods based on direct/modified
Prony modeling and linear prediction autoregressive methods
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(originated from the pioneer work of R. Kumaresan and
D. Tufts in 1982), combined with low-rank Hankel ma-
trix approximations, singular value decomposition, eigenvalue/
subspace analysis, higher order statistics, and many others
approaches, have not found application in mechanical spec-
troscopy mainly due to noise sensitivity and very low accuracy.
Therefore, they are not presented and discussed in this paper.

The signal-to-noise (S/N) ratio of strain response signals
recorded by modern mechanical spectrometers is 38 dB [5], [8],
[9]. It should be emphasized that, in mechanical spectroscopy,
very high and repeatable (constant) computation accuracy is
required to minimize dispersion (scatter) of experimental points
(e.g., δ and f0). The Yoshida DFT-based logarithmic decrement
estimation method [11] and the NLS time-domain signal fit-
ting to a model implemented as an optimization-in-multiple-
intervals (OMI) method [8] can be advocated as gold standards
in this field. A comparison between classical methods and the
OMI algorithm is reviewed in [5] and [7]–[9], whereas advan-
tages of the OMI method are pointed out in [5], [8], and [9].

The goal of this paper is to compare the Yoshida method
[11], the most popular DFT-based approach in mechanical spec-
troscopy [2], [3], with other existing DFT-based algorithms,
namely, with the approaches of Bertocco et al. [12] and Agrež
[13]. We note here that Bertocco did not compare his method
to Yoshida’s method, although his method was proposed
13 years later, and as demonstrated unequivocally in this paper,
the Yoshida method (designed originally for an inverted torsion
pendulum) outperforms Bertocco’s method. We also propose
two new DFT-based methods and point out their advantages
and disadvantages. The first method is based on a DFT analysis
with Rife–Vincent class-I (RVCI) windows, and its derivation
is similar to interpolated DFT methods for undamped sinusoids
[15]–[21]. The second approach is based on different order
differences of consecutive DFT bins, and it can be treated as
an extension of the Yoshida [11] and Bertocco [12] methods.
All the results, obtained for simulated data (embedded in 38-dB
white noise) are compared with the NLS method as reference.

II. ESTIMATION METHODS

A. Problem Statement

A strain response signal in low-frequency resonant mechani-
cal spectroscopy is described as follows:

x(t) = Ae−δf0t cos(2πf0t + ϕ) + εw(t) + εZPD(t) (1)

where t is the continuous time in seconds, A > 0 is the maximal
strain amplitude, f0 is the resonant frequency in hertz, −π <
ϕ ≤ π is the phase in radians, δ is the logarithmic decrement,
εw(t) stands for measurement noise, and εZPD(t) denotes the
ZPD [5], [6]. The ZPD represents a highly undesirable and
dreaded part of the data. The objective of mechanical loss
measurement, carried out in mechanical spectrometers, is to
estimate the value of the logarithmic decrement δ and the
resonant frequency f0.

The range of possible values of δ is from 5 × 10−6 to
around 2, and the range for the resonant frequency f0 is from
0.1 to about 10 Hz. The estimation of δ and f0 is based on

digital representation of (1). Finally, the value of sampling
frequency is fs = 1 kHz, and the acquisition time of free
decaying oscillations is 30 s in the experimental setup.

The digital representation of (1) has the following form:

x[n] = Ae−βn cos(ω0n + ϕ) + εw[n] + εZPD[n] (2)

where x[n] stands for the recorded experimental data,
n = 0, 1, 2, . . . , N − 1, ω0 = 2π(f0/fs), and damping β =
δf0/fs. The angular frequency ω0 approximately ranges from
0.001 to 0.06 rad, and the number of samples is N = 30 000.

B. Direct Time-Domain Least Squares Optimization

Generally, the problem of estimating β and ω0 in (2) and,
thus δ and f0 in (1), may be tackled by parametric and non-
parametric methods. A straightforward parametric solution is
an NLS optimization of a cost function in the time domain
defined as

C(A, β, ω0, ϕ, εdc)

=
N−1∑
n=0

[
x[n] − Ae−βn cos(ω0n + ϕ) − εdc

]2
(3)

where εdc stands for an offset. In the case of zero-mean
Gaussian noise, the minimization of (3) is a statistically effi-
cient estimator.

In the Magalas method [8], implementation of the time-
domain NLS optimization was proposed for high-damping
materials that is robust against starting point selection. An NLS
Levenberg–Marquardt local optimization procedure is done in
the OMI; i.e., first, signal parameters are found using an initial
part of the signal, and then, obtained values are used as a
starting point in optimization on a larger signal interval (having
more samples but starting from the beginning) and so on until
the entire data spans are used in the optimization procedure.

In this paper, the NLS method is used to evaluate statistical
efficiency of DFT-based algorithms. The time-domain NLS
algorithm has clear drawbacks such as difficulty with taking
into account arbitrary measurement disturbance in a signal
model, high computational cost, and sensitivity to starting
point selection in different mechanical spectrometers (mode of
vibrations, resonant frequency, shape of a sample, etc.).

C. DFT-Based Methods

The main advantage of nonparametric DFT-based signal
parameter estimation is computational efficiency as only one
fast Fourier transform of the analyzed signal is required with
literally a few extra addition and multiplication procedures.
However, it seems pertinent here to remark on the disadvantage
of the DFT-based analysis: it is biased by systematic errors
caused by spectral leakage and a picket fence effect (detailed
discussion on these topics can be found in [22] and [23]).
The impact of spectral leakage is substantially reduced using
appropriate time windows, whereas picket fence errors are
reduced by DFT interpolation algorithms.
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The analyzed signal x[n] is assumed to have nonzero values
only for indices n = 0, 1, 2, . . . , N − 1 and to be zero else-
where; thus, it can be interpreted as signal x[n] multiplied by
the finite-length time window w[n] [22] in the following:

v[n] = w[n]x[n] = w[n]Ae−βn cos(ω0n + ϕ). (4)

The DFT of signal (4) is defined as

V [k] =
N−1∑
n=0

v[n]e−jωkn (5)

where ωk = (2π/N)k, and k = 0, 1, 2, . . . , N − 1. If the an-
alyzed signal is observed for a noninteger number of periods,
then its angular frequency ω0 lies either between the DFT bins
ωk and ωk+1 or ωk and ωk−1, where the DFT bin for ωk has
the highest magnitude. The objective of the DFT interpolation
algorithm is to determine the frequency correction d, and then,
the angular frequency ω0 of the signal is given by

ω0 = (k ± d)
2π

N
0 < d ≤ 0.5. (6)

The DFT interpolation problem has several solutions for pure
[15]–[21] and damped sinusoidal signals [11]–[14]. The latter
is briefly summarized below.

1) Yoshida Algorithm: The DFT of sequence (4) with a
rectangular window is computed, and the following ratio R is
evaluated as

R =
V [k − 2] − 2V [k − 1] + V [k]
V [k − 1] − 2V [k] + V [k + 1]

. (7)

In (7), four DFT bins with the highest magnitude are used.
Damping β and frequency ω0 are given by

β =
2π

N
Im {−3/(R − 1)}

and

ω0 =
2π

N
Re {k − 3/(R − 1)} (8)

where k is the index of the DFT bin with the highest magnitude.
2) Bertocco Algorithm: The following ratio is used:

R =
V [k ± 1]

V [k]
(9)

where V [k] has the highest magnitude; V [k + 1] is in the nu-
merator if |V [k + 1]| ≥ |V [k − 1]|, and V [k − 1] if otherwise.
The frequency correction d and damping β are given by

d =
N

2π
arg{z}, β = ln |z| (10)

where

z =
1 − R

1R exp (±(−j2π/N))
(11)

and the sign in the denominator is the same as in (9).

3) Bertocco–Yoshida Algorithm: In the Yoshida method
[11], ratio R is defined using the second-order differences of the
DFT bins. Looking from the same perspective, in the Bertocco
algorithm [12], the zero-order differences are used. Thus, there
is an algorithmic gap since the first-order differences are miss-
ing. Therefore, we derive a new estimation algorithm that
covers this gap and makes use of the ratio as follows:

R =
V [k − 1] − V [k]
V [k] − V [k + 1]

. (12)

Then

λ = ejωk
r − R

re−j2π/N − Rej2π/N

r =
−e−jωk + e−jωk−1

−e−jωk+1 + e−jωk
(13)

and damping and frequency are computed as

β = −Re {ln(λ)} and ω0 = Im {ln(λ)} . (14)

Derivation of the aforementioned algorithm as well as an
interpolation formula for third-order differences is given in
Appendix A. We refer to this method as Bertocco–Yoshida, and,
in all figures, denote it by BY-M , where M is the method’s or-
der. The special cases of the BY-M method are BY-0, which is
the Bertocco method, and BY-2, which is the Yoshida method.

4) Agrež Algorithm: The frequency correction d is esti-
mated by a three-point interpolation DFT algorithm with
a Hann window designed for undamped sinusoids [19] as
follows:

d = 2
|V [k + 1]| − |V [k − 1]|

2 |V [k]| + |V [k − 1]| + |V [k + 1]| (15)

where V [k] is the DFT bin with the highest magnitude. The
damping β is estimated from (18) with M = 0 or M = 1.

5) Rife–Vincent Algorithm: In this paper, we propose a new
DFT interpolation formula for the signal analyzed with RVCI
windows of an arbitrary order. The methods aforementioned use
either a rectangular (RVCI order 0) or a Hann (RVCI order 1)
window. The RVCI windows are cosine windows defined as

wM [n] =

⎧⎨
⎩

M∑
m=0

(−1)mAw[m] cos
(

2π
N mn

)
0, if otherwise

(16)

where n = 0, 1, 2, . . . , N − 1, and coefficients Aw[m] are
given, e.g., in [17] and [21]. For M = 0 and Aw[m] = 1, we
get the rectangular window w0[n] = 1 in (16). For M = 1
and Aw[m] = [1; 1] we get the Hann window w1[n] = 1 −
cos((2π/N)n). The RVCI windows are also defined in [23]
as cosα(X), with α = 0, 2, 4, 6, . . . windows. They have the
fastest decay of sidelobes. For higher values of M , the es-
timation methods are more accurate in noise-free conditions;
however, in a noisy environment, they have significantly higher
variance.

The frequency correction for the damped sinusoidal sig-
nal analyzed with the RVCI order M window equals as
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TABLE I
SUMMARY OF THE DFT INTERPOLATION FORMULAS

follows:

d = −2M + 1
2

R1 − R2

2(M + 1)R1R2 − R1 − R2 − 2M
(17)

and damping is given by

β =
2π

N

√
(d + M)2 − R1(d − M − 1)2

R1 − 1
d �= 0.5 (18)

with

R2 =
|V [k − 1]|2

|V [k]|2

and

R2 =
|V [k − 1]|2

|V [k]|2
. (19)

The derivation of (17) and (18) is outlined in Appendix B.
It is worth mentioning that (18) is consistent with the formulas
presented in [13] for the rectangular and Hann windows, i.e.,
for M = 0 and M = 1. The significant difference between our
algorithm and the one presented in [13] is that we derived a
new formula for the frequency correction d in (17), which is
used in (18), whereas in [13], the three-point DFT interpo-
lation algorithm designed for an undamped sinusoids is ex-
ploited in (18).

It is observed in (18) that, for d = 0.5, this equation reduces
to β(d = 0.5) = 2π(0.5 + M)/N , which is incorrect, as damp-
ing does not depend on DFT bins anymore. This property of
(18) is not discussed in [13]. A practical remedy in such a case
is to append a zero-value sample at the end of the analyzed
signal; this causes change in the DFT frequency step and also in
the value of frequency correction d. In our implementation, we
append 0 to the signal if |0.5 − d| < 10−4. In the following, we
denote the proposed algorithms (17)–(19) by RVCI-M , where
M is the method’s order, i.e., the order of the RVCI window.

The summary of the DFT-based interpolation formulas is
given in Table I. In the case of RVCI-M , we have two-step
estimation: Frequency correction and damping that depends
on the frequency correction. This leads to higher variance of
the damping estimation as compared with the BY-M methods
where both parameters are obtained in a single step.

III. SIMULATIONS

In this section, we analyze the propagation of the measure-
ment errors through the estimation algorithms and compare it
with the optimal NLS estimator (3). We used NLS implemented
by the MATLAB fit function from the Curve Fitting Toolbox.
Starting values for the NLS optimization were taken from the
proposed interpolation formulas (17) and (18) with RVCI-M =
1. During simulations, the mean time of the NLS optimization
was approximately 140 times longer than the mean time of the
DFT-based estimation.
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Fig. 1. Exemplary free decaying test signal disturbed by additive noise.

Disturbance εw(t) is real valued zero-mean Gaussian noise
with variance σ2. The S/N ratio for the exponentially damped
sinusoidal signal in decibels is defined as [14], [24]

S/N = 10 log10(η) dB η = A2/(2σ2). (20)

Since the S/N ratio of a low-frequency modern mechanical
spectrometer (e.g., a torsion pendulum) is approximately on the
level of 38 dB [5], [7]–[9] the test signals were embedded in
such noise. In each case, 100 test signals were generated with a
random phase with uniform distribution from −π to π rad and
disturbed by additive noise.

The analyzed errors are computed as errδ = δE − δ and
errf0 = f0E − f0, where δ and f0 and δE and f0E are true and
estimated values, respectively.

Note, that parameters δ and f0 of the continuous model (1)
are estimated from sequence (2); thus, first, damping βE is es-
timated, and next, the logarithmic decrement δE = βEfs/f0E

means that the error of the f0 estimation propagates into the δ
estimation.

Fig. 1 depicts an exemplary test signal disturbed by addi-
tive 38-dB Gaussian noise. In simulations, the entire range of
experimentally measured values of δ from 0.0001 to 0.01 is
considered. For the observation time, 30-s test signals with
δ smaller then 0.001 looks like undamped sinusoids, i.e., the
damping is very small for a visible graphical illustration.

A. Influence of the Logarithmic Decrement

In this section, we analyze estimation errors for test signals
with f0 = 1.01 Hz for different values of δ.

The test signals are noncoherently sampled, and the fre-
quency correction is d = 0.3.

Figs. 2 and 3 and Figs. 4 and 5 show the maximum error
and the standard deviation (STD) of f0 and δ estimation as a
function of δ, respectively. In Fig. 3, the STD for the Bertocco
method is on the level above 8 × 10−5, and for this reason, it
is not visible. An increase in std(f0E) observed in Fig. 3 for
higher values of δ is caused by the high damping level β.

Fig. 2. Maximum error of the resonant frequency estimation.

Fig. 3. STD of the resonant frequency estimation. The Bertocco method is out
of scale on the level above 8 × 10−5.

Fig. 4. Maximum error of the logarithmic decrement estimation.
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Fig. 5. STD of the logarithmic decrement estimation.

Fig. 6. Maximum error of the resonant frequency estimation.

The proposed RVCI-1 method performs similarly to the
Yoshida method in f0 estimation, and the proposed BY-1
method gives similar results to the Yoshida method in δ
estimation.

For the special case of the coherent sampling f0 = 1 Hz (not
presented in figures), the best results in f0 and δ estimation
were obtained for the proposed BY-1 method, and the second
place was taken by the Yoshida method.

B. Influence of the Resonant Frequency

In this section, we analyze the estimation errors for δ = 0.1
as a function of f0. Figs. 6 and 7 and Figs. 8 and 9 show
the maximum error and the STD of f0 and δ estimation,
respectively.

For f0 = 1 Hz, test signals are coherently sampled. This is
observed in Figs. 6–9 as a local minimum for the Agrež method;
unfortunately for noncoherent sampling, this method is severely
biased. By fixing acquisition time, we can see an increase in the
estimation errors with the resonant frequency f0 (see Figs. 6–9)
due to increasing value of damping β = δf0/fs. In turn, for

Fig. 7. STD of the resonant frequency estimation.

Fig. 8. Maximum error of the logarithmic decrement estimation.

Fig. 9. STD of the logarithmic decrement estimation, for f0 from 0.1
to 10 Hz.

very small values of f0, estimation quality of δ is getting worse
due to decreasing number of oscillations present in the analyzed
time interval.
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Fig. 10. STD of the logarithmic decrement estimation, for f0 from 0.98 to
1.02 Hz.

The best results for the coherent sampling were obtained for
the proposed BY-1 method.

Fig. 10 depicts the STD of the δ estimation for frequencies f0

in the close neighborhood of coherent sampling, which occurs
for f0 = 1 Hz. For close-to-coherent sampling conditions, the
proposed BY-1 method has the lowest STD of δ. A similar prop-
erty was observed (but is not presented) for the f0 estimation.
In practice, such conditions are easy to obtain by appending a
vector of zeros with appropriate length at the end of a signal
before DFT computation.

C. Influence of the ZPD

In this section, we compute the errors induced by the ZPD
[5], [6]. We aim at comparing robustness of the DFT-based
methods against the ZPD. The ZPD is modeled by a linear
function as follows:

εZPD(t) = aAt/Tmax (21)

where Tmax = 30 s, and a is a constant that determines “the
strength” of the ZPD. Likewise, in simulations, other extrinsic
functions may be also used, such as parabolic, power law, or
exponential. Of course, it is not guaranteed that an a priori
selected function corresponds to the physically meaningful
ZPD (“self-microtwisting” of a sample [5]) embedded in the
analyzed free decaying signal.

Figs. 11 and 12 show the maximum error and the STD of the
δ estimation as a function of the ZPD “strength,” respectively.
Results for f0 (not shown) are similar. The best results are
obtained for the Yoshida method, although for a weak ZPD,
the proposed BY-1 method yields similar results. The time-
domain NLS optimization gives poor results for the analyzed
free decaying signal Tmax = 30 s as, in general, only a constant
offset is included in the signal model. Yet, the NLS-based OMI
can be successfully used for a short-time segment of a signal
disturbed by the ZPD [5].

Since the ZPD is generally not possible to be included in the
signal model, the NLS method looses against the DFT-based

Fig. 11. Maximum error of the logarithmic decrement estimation.

Fig. 12. STD of the logarithmic decrement estimation.

methods. For the DFT-based methods, the separation of the
signal of interest from any disturbance is much easier as it is
done in the frequency domain.

D. Systematic Errors

In this section, we show the systematic errors of the DFT-
based methods described in this paper. Systematic errors are
computed for ideal test signals, i.e., εw[n] = 0, εdc[n] = 0,
and εZPD[n] = 0, and for that reason, they are not of primary
concern in mechanical spectroscopy, where we always analyze
noise-free decaying oscillations.

However, systematic errors are important in other applica-
tions for signals with a higher S/N ratio. It is also interesting
to observe bias–variance tradeoff of the estimators, e.g., the
Yoshida algorithm is ordinary in the sense of systematic errors,
but it is excellent in the sense of noise immunity for the
previously analyzed case of S/N = 38 dB.

Systematic errors, when small as expected, are also good
validation of derivation (i.e., assumed approximations) and
implementation of the algorithms.
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Fig. 13. Maximum systematic error of the logarithmic decrement estimation.

Fig. 14. Maximum systematic error of the logarithmic decrement estimation.

Fig. 15. Maximum systematic error of the logarithmic decrement estimation.

As before, 100 test signals with a uniformly distributed
random phase were generated for different values of resonant
frequency and logarithmic decrements. Maximum estimation
systematic errors are shown in Figs. 13–15.

In all cases, increasing the order of a BY-M or an RVCI-M
method results in significant reduction in systematic errors. It is
also observed that the Agrež algorithm works well only when
the signal is coherently sampled, i.e., f0 = 1 Hz, for which case
it is practically equivalent to the RVCI-1 method (see Fig. 14).

Figs. 13–15 clearly indicate that the proposed algorithms
have significantly lower systematic errors than the other meth-
ods reported in the literature.

IV. CONCLUSION

In this paper, an important family of DFT-based algorithms
for the parameter estimation of exponentially damped sinusoids
has been reviewed, and two new nonparametric methods have
been presented. The algorithms have been tested on time-
domain data encountered in low-frequency resonant mechani-
cal spectroscopy and shown good performance in the parameter
estimation. For the proposed BY-M and RVCI-M methods,
systematic errors may be arbitrarily small for sufficiently high-
order M .

In the case of noisy measurements, the resonant frequency f0

and the logarithmic decrement δ can be estimated with higher
accuracy and lower STD by the proposed BY-1 than by the
Yoshida method for the easy-to-be-obtained close-to-coherent
conditions.

Obviously, for experimentally justified cases, an increase in
the sampling frequency fs (e.g., from 1 to 5 kHz) reduces the
variance of f0 and δ for all methods analyzed in this paper.

The results presented in this paper exhibit that the Agrež
method offers good f0 estimation performance only for coher-
ent sampling, whereas the proposed RVCI-1 algorithm is supe-
rior among DFT-based f0 estimation methods for noncoherent
sampling. By contrast, the Yoshida method has confirmed its
superiority (among the DFT-based approaches) in logarithmic
decrement estimation. However, the proposed BY-1 method
may have lower STD for close-to-coherent sampling.

It was also demonstrated that the Bertocco method is a poor
estimator, as compared with other DFT-based methods.

The DFT-based estimation of resonant frequency and log-
arithmic decrements should be preferred over optimization-
based NLS when processing time is a limiting factor. Indeed,
in performed simulations, the DFT-based estimation was, on
average, more than 140 times faster (for N = 30 000 samples)
than the NLS one initialized by the RVCI-1, and still, the
variance of estimation was reasonably low compared with the
optimal NLS.

DFT-based estimation should also be preferred over a time-
domain NLS optimization when a measurement signal is ex-
pected to contain undesirable components [11] that cannot be
included in a signal model. In this paper, we analyzed the ZPD,
which is the crucial problem for shape memory alloys and
in situ deformed metallic samples [5], [6], [10]. The difficulty
of model selection is the major drawback of all parametric
methods.

When computational time is not a concern, the DFT-based
methods should be used to provide a good starting point to the
NLS optimization and thus to improve significantly optimiza-
tion convergence.
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Although not discussed in the paper, the DFT-based methods
can also be used to analyze multicomponent signals in various
spectroscopic techniques. In such case, spectral leakage from
neighboring frequencies may by effectively reduced by the
proposed RVCI-M method.

The NLS optimization may also be conducted in the fre-
quency domain. For a rectangular window, the cost function
defined with all DFT bins is an optimal estimator of signal
parameters and is equivalent to the optimization of (3) [25].
Unmodeled disturbances such as the general ZPD may be
removed from the cost function by discarding proper DFT
bins. Spectral leakage from unmodeled disturbances may be
reduced by appropriate time windows. However, using a win-
dow other than the rectangular one and reducing the number
of DFT bins in the cost function decreases statistical efficiency,
and the estimator is no longer optimal; this is a well-known
bias–variance tradeoff. The theoretical DFT spectrum of the
damped sinusoidal signal analyzed with an arbitrary cosine
window may be derived easily with the concept of the damped
time window introduced in this paper.

APPENDIX A

The DFT of the signal (4) analyzed with the rectangular
window is given by [25]

V [k] =
A

2

(
ejϕ 1 − λN

1 − λe−jωk
+ e−jϕ 1 − λ∗N

1 − λ∗e−jωk

)
(A1)

where λ = e−β+jω0 , ωk = (2π/N)k, and an asterisk stands for
the complex conjugate value. We assume that spectral leakage
from the negative frequencies can be neglected. Therefore, the
DFT spectrum (A1) is approximated by

V [k] ≈ A

2

(
ejϕ 1 − λN

1 − λe−jωk

)
. (A2)

Let us compute the following ratio of the first-order differ-
ences of the DFT bins:

R =
V [k − 1] − V [k]
V [k] − V [k + 1]

=
1 − λe−jωk+1

1 − λe−jωk−1
r

r =
−e−jωk + e−jωk−1

−e−jωk+1 + e−jωk
. (A3)

From (A3), we get the following:

λ = ejωk
r − R

re−j2π/N − Rej2π/N
. (A4)

Damping and frequency are next computed as

β = −Re {ln(λ)} and ω0 = Im {ln(λ)} . (A5)

Going the same pattern with the ratio of the third-order
differences, we get the following:

R =
V [k − 2] − 3V [k − 1] + 3V [k] − V [k + 1]
V [k − 1] − 3V [k] + 3V [k + 1] − V [k + 2]

=
1 − λe−jωk+2

1 − λe−jωk−2
r (A6)

where

r = r1/r2

r1 = (1 − λe−jωk−1)(1 − λe−jωk)(1 − λe−jωk+1)

− 3(1 − λe−jωk−2)(1 − λe−jωk)(1 − λe−jωk+1)

+ 3(1 − λe−jωk−2)(1 − λe−jωk−1)(1 − λe−jωk+1)

− (1 − λe−jωk−2)(1 − λe−jωk−1)(1 − λe−jωk)

r2 = (1 − λe−jωk)(1 − λe−jωk+1)(1 − λe−jωk+2)

− 3(1 − λe−jωk−1)(1 − λe−jωk+1)(1 − λe−jωk+2)

+ 3(1 − λe−jωk−1)(1 − λe−jωk)(1 − λe−jωk+2)

− (1 − λe−jωk−1)(1 − λe−jωk)(1 − λe−jωk+1) (A7)

and λ is approximated by (A4). From (A6), we get the
folllowing:

λ = ejωk
r − R

re−j2(2π/N) − Rej2(2π/N)
. (A8)

Damping and frequency are computed from (A5) as before.

APPENDIX B

Let us define the damped time window w̄[n] = w[n]Ae−βn;
then, (4) may be rewritten as

v[n] = W [n]A cos(ω0n + ϕ). (B1)

The continuous theoretical spectrum of the windowed dis-
crete time signal (B1) is given by [22]

V (ejω) =
A

2
ejϕW

(
ej(ω−ω0)

)
+

A

2
e−jϕW

(
ej(ω+ω0)

)
(B2)

where W (ejω) is the spectrum of the damped window w̄[n],
and 0 ≤ ω < π.

The spectrum of the rectangular window is given by [22]

W0(ejω) =
N−1∑
n=0

e−jωn = e−jω(N−1)/2 sin(ωN/2)
sin(ω/2)

. (B3)

Using (B3), the spectrum of the damped rectangular window
is as follows:

W 0(ejω̄) =
N−1∑
n=0

e−βne−jωn = e−jω̄(N−1)/2 sin(ω̄N/2)
sin(ω̄/2)

(B4)

where ω̄ = ω − jβ. For damping β = 0, we get the spectrum
of the rectangular window in (B4).

Theoretical spectrum of the arbitrary cosine window (16)
may be computed as a sum of the frequency shifted and
the rescaled spectra of the rectangular window. As an ex-
ample, let us consider the Hann window. This window may
be interpreted as a sum of the rectangular window with the



DUDA et al.: DFT-BASED ESTIMATION OF DAMPED OSCILLATION PARAMETERS IN MECHANICAL SPECTROSCOPY 3617

rectangular window shifted to frequency 2π/N , namely as
follows:

w1[n] = 1 − cos ((2π/N)n) = w0[n] − w0[n] cos ((2π/N)n) .
(B5)

The spectrum of the Hann window from (B5) and (B2) is as
follows:

W1(ejω)= −1
2
W0

(
ej(ω−ω1)

)
+W0(ejω)− 1

2
W0

(
ej(ω+ω1)

)
(B6)

with ω1 = 2π/N . Generally, the spectrum of the arbitrary
periodic cosine window (16) is as follows:

WM (ejω) =
M∑

m=0

(−1)m Aw[m]
2

W0

(
ej(ω−ωm)

)

+ (−1)m Aw[m]
2

W0

(
ej(ω+ωm)

)
(B7)

with ωm = (2π/N)m, and the spectrum of the damped cosine
window is as follows:

WM (ejω̄) =
M∑

m=0

(−1)m Aw[m]
2

W 0

(
ej(ω̄−ωm)

)

+ (−1)m Aw[m]
2

W 0

(
ej(ω̄+ωm)

)
. (B8)

We assume that spectral leakage from negative frequencies
can be neglected. Therefore, the continuous theoretical spec-
trum of the windowed discrete time signal (B1) is approxi-
mated by

V (ejω) ≈ A

2
ejϕW

(
ej(ω−ω0)

)
. (B9)

Using (B9), the ratios defined by (19) are as follows:

R1 =
|V [k + 1]|2

|V [k]|2
≈

∣∣W (ωk+1)
∣∣2∣∣W (ωk)

∣∣2
R2 =

|V [k − 1]|2

|V [k]|2
≈

∣∣W (ωk−1)
∣∣2∣∣W (ωk)

∣∣2 (B10)

where V [k] has the highest magnitude, and V [k + 1] and V [k −
1] are the second and the third DFT bins with the highest
magnitude, respectively. Using the ratios R1 and R2, we freed
the problem from the amplitude and phase parameters.

Using the frequency correction d defined by (6), we have the
following:

ωk−1 =ω0 − d2π/N − 2π/N

ωk =ω0 − d2π/N

ωk+1 =ω0 − d2π/N + 2π/N (B11)

where ω0 is the signal frequency. The desired formulas for (17)
and (18) are obtained by putting (B11) into (B10) and solving
for d and β. The derivation for the higher order RVCI windows
require space-consuming algebra, and for this reason, we only

show the solution for RVCI order 0 and RVCI order 1; for
higher orders, the derivation goes in the same pattern.

For the damped rectangular window (RVCI, M = 0) in (B4)
and (B11), we have the following:

∣∣W 0(ωk−1)
∣∣ ≈ e−β(N−1)/2 N

π

|sin (−dπ + βN/(2j))|
| − d − 1 − jB|

∣∣W 0(ωk)
∣∣ ≈ e−β(N−1)/2 N

π

|sin (−dπ + βN/(2j))|
| − d − jB|

∣∣W 0(ωk+1)
∣∣ ≈ e−β(N−1)/2 N

π

|sin (−dπ + βN/(2j))|
|−d + 1 − jB|

(B12)

where B = βN/(2π), and we assumed that the arguments of
the sinusoidal functions are small enough to be replaced by their
arguments. Using (B12), the ratios (B10) are as follows:

R1 =
d2 + B2

(d − 1)2 + B2
and R2 =

d2 + B2

(d + 1)2 + B2
. (B13)

Solving (B13) for d and β, we get (17) and (18) for M = 0.
For the damped Hann window (RVCI, M = 1) in (B6), we

have the following:

∣∣W 1(ejω)
∣∣ = e

−β(N−1)
2

∣∣∣∣sin
(

ωN

2
+ β

N

2j

)∣∣∣∣
×

∣∣∣∣∣∣−
0.5

sin
(

ω
2 + β

2j − π
N

) +
1

sin
(

ω
2 + β

2j

)

− 0.5

sin
(

ω
2 + β

2j + π
N

)
∣∣∣∣∣∣ . (B14)

Putting (B11) into (B14) and computing (B10) give the
following:

R1 =
(d + 1)2 + B2

(d − 2)2 + B2
and R2 =

(d − 1)2 + B2

(d + 2)2 + B2
. (B15)

By solving (B15) for d and β, we get (17) and (18)
for M = 1.
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