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Abstract. The advantages of the OMI algorithm to compute the logarithmic decrement and the 

resonant frequency from free decaying oscillations is reported. The OMI algorithm is proved to be 

the best solution in the computation of the logarithmic decrement and the resonant frequency for 

high damping levels. 

Introduction 

In this paper we present the advantages of the OMI algorithm (Optimization in Multiple Intervals) 

[2 - 3] used in the computation of the logarithmic decrement δ  and the resonant frequency of  for 

high damping levels. A comparison between the OMI algorithm and classical methods [1 - 3] is also 

reported. Although the results of computations depend on several parameters such as the sampling 

frequency sf  of free-decaying signal, the signal-to-noise ratio S/N (a specific value for any 

particular mechanical spectrometer), the amplitude of oscillations iA , the length of the decaying 

harmonic oscillations used for signal acquisition L  (and in the computation of the logarithmic 

decrement), the absolute value of the logarithmic decrement δ  to be measured, a priori defined 

density of experimental points, and the resonant frequency of exponentially damped harmonic 

oscillations of  it is clearly demonstrated that the OMI algorithm is the best solution. In all of these 

instances, the OMI algorithm yields stable results, the lowest dispersion of experimental points, and 

the lowest relative error. The scope of this paper does not cover the case of the medium and the low 

level logarithmic decrement (δ  below 0.01) [1, 2]. 

It will be also shown that the OMI algorithm yields excellent results in the computation of the 

resonant frequency of  (better precision and decidedly smaller scatter in experimental points) which 

leads to an increase in the quality of mechanical loss spectra (both the logarithmic decrement and 

the resonant frequency). 

The Logarithmic Decrement 

The logarithmic decrement δ  can be computed from several algorithms, viz. (1) N_osc (Number of 

oscillations) – from the number of N  oscillations to decay from amplitude 1A  to 1+nA  (note that in 

this work N  is the number of oscillations for given L ), (2) RA (Regression of Amplitudes) – from 

the height of N  decaying amplitudes, (3) RS (Regression of Areas) – from the areas under a half 

cycle of N  decaying oscillations, and (4) OMI – Optimization in Multiple Intervals. The computing 

algorithms used in low-frequency resonant mechanical spectroscopy are described elsewhere [1 -

 4]. In the following sections the precision in the computation of the logarithmic decrement δ  and 

the resonant frequency of  will be compared for the algorithms mentioned before. 
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The OMI Algorithm 

The OMI algorithm returns the logarithmic decrement δ  and the resonant frequency of  of 

exponentially damped pure harmonic oscillations [2, 3]. The OMI algorithm fits the following 

parameters CfA ,,,, ϕβ of the theoretical function of damped harmonic oscillations )(ta  

CftAta ++⋅⋅⋅⋅−⋅= )2(cos)(exp)( ϕπβ                                                                                (1) 

to the experimental data }...1:),{( niat ii = . f  is the frequency of harmonic oscillations, 

f⋅= δβ , t  is time, ϕ  is the phase, and A , C  are constants.  it  and ia  are time and the amplitude 

of the i -th sample, respectively. n  denotes the total number of digital samples. The Lavenberg-

Marquardt (L-M) method is usually used to minimize the nonlinear least-square function 
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Initial estimates of the fitting parameters ooooo CfA ,,,, ϕβ can be readily estimated. The initial 

values are returned to the vector of starting values [ CfA ,,,, ϕβ ]. 

In the first step, Eq. (2) is minimized for the first cycle of damped oscillations. The fit result is 

returned to the vector of starting values. The second interval of experimental data contains higher 

number of experimental points (selection of the number of experimental points for the second 

interval depends on the value of the logarithmic decrement). Equation (2) is minimized for the 

second interval and the fit result is returned to the vector of starting values. The number of 

experimental data is multiplied by a parameter from the range 1.1 to 2 in the following interval, etc. 

The process is repeated until the last interval of experimental data contains all the experimental 

points }...1:),{( niat ii = . When this occurs, the process has converged giving the final values for 

the parameters CfA ,,,, ϕβ  [2, 3]. It is not difficult to show, by means of the analysis of the 

global minimum, that the final solution is unique (the logarithmic decrement and the resonant 

frequency is unequivocally found). A detailed account of the OMI algorithm has been given 

elsewhere [2, 3]. 

Computation of the Logarithmic Decrement 

Figure 1 shows variation of the logarithmic decrement δ , the relative error γ  (Fig. 1 a) and the 

standard deviation σ  (Fig. 1 b) computed for the N_osc, RA, RS and OMI algorithms for high 

damping level, δ = 0.5. Computations were performed for a set of 400 measurements. 

The OMI algorithm shows unequivocally that its performance is superior as compared to the 

classical algorithms (for long and short acquisition times). The relative error and the standard 

deviation depends on several parameters: (1) the length of the decaying oscillations L  used for 

signal acquisition, (2) the sampling frequency sf , the signal-to-noise ratio S/N , and the resolution 

of the A/D data acquisition board used for signal acquisition, and (3) amplitude of the decaying 

oscillations )(ta . In this work it is tacitly assumed that exponentially damped harmonic oscillations 

are purely symmetrical (the ‘zero-point drift’ ZPD is negligible [4]). 

Figure 2 illustrates variation of the logarithmic decrement δ , the relative error γ  (Figs. 2 a, 2 b) 

and the standard deviation σ  (Fig. 2c) computed for the N_osc, RA, RS and OMI algorithms for 

high damping level, δ = 0.05. Computations were performed for a set of 400 measurements. 

Superiority of the OMI algorithm is clearly visible for short acquisition times. This is why the OMI 

algorithm yields lower dispersion in experimental points and higher density of experimental points. 

Figure 2 also illustrates how to find the best acquisition time L  (see Figs. 2 a, 2 c). The point we 

should like to emphasize is that excellent computing result can be obtained from the OMI algorithm 

for a few oscillations (3 – 6 oscillations). It turns out that further increase in the acquisition time L  
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(see Figs. 2 b, 2 c) does not yield substantial improvement in increasing computing precision and 

decreasing dispersion of experimental points. The performance of the OMI algorithm was tested for 

all acquisition and experimental parameters described in [2]. 
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Fig. 1. (a) Variation of the logarithmic decrement δ , the relative error γ , and (b) the standard 

deviation σ   computed according to N_osc, RA, RS and the OMI algorithm as a function 

of the acquisition time L . δ = 0.5, sampling frequency sf  = 5 kHz, 38/ =NS dB. 
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            c) 

 

Fig. 2. (a), (b) Variation of the logarithmic decrement δ , the relative error γ , and (c) the standard 

deviation σ  computed according to N_osc, RA, RS and the OMI algorithm as a function 

of the acquisition time L . δ = 0.05, sampling frequency sf  = 5 kHz, 38/ =NS dB, 

resonant frequency of  = 1 Hz. 
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                                                c)                                                                          d) 

Fig. 3. Relative error γ  in the computation of the resonant frequency according to the OMI 

algorithm (□) and the ‘zero crossing’ method for two sampling frequencies: sf  = 5 kHz 

(○) and sf  = 0.5 kHz (∆). (a) δ = 0.0005, (b) δ = 0.005, (c) δ = 0.05, (d) δ = 0.5. 

Calculations were performed for a set of 400 measurements; 38/ =NS dB, resonant 

frequency of  = 1 Hz. 
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Computation of the Resonant Frequency 

Figure 3 illustrates precision in the calculations of the resonant frequency ( of  from 0.5 Hz to 5 Hz) 

as a function of the acquisition time L  obtained from the OMI algorithm and the ‘zero crossing’ 

method (optimized in this work) for different levels of the logarithmic decrement. The OMI 

algorithm yields: (1) the best estimation of the resonant frequency, (2) the lowest relative error in 

the estimation of the resonant frequency, (3) decidedly better results for short, average, and long 

acquisition times, (4) stable computing results. It is worthwhile to emphasize that the superiority of 

the OMI algorithm turns out to be independent of the sampling frequency ( sf  from 0.1 kHz to 5 

kHz). This is why the OMI algorithm can also be recommended for ‘old’ mechanical spectrometers 

working with low sampling frequency and/or ‘old’ A/D data acquisition boards. Although the 

computing parameters [2] used in this work were tailored to obtain the smallest available error the 

differences between the relative errors in the calculations of the resonant frequency from the OMI 

and the ‘zero crossing’ can be 1 - 3 orders higher for a particular mechanical spectrometer. Such 

differences are usually induced by the acquisition and the experimental parameters discussed in [2]. 

In all investigated cases the OMI algorithm yields the best results. 

Let us recall [2, 3] that knowing theoretical relationship between known computation error for a 

chosen sampling frequency in a mechanical spectrometer one can readily predict the computation 

error for other sampling frequency (see Fig. 3 in [2]) and the signal-to-noise ratio NS /  [3]. This is 

why one can easily explain ‘small’ differences shown in Fig. 3. The effect of the sampling 

frequency and the signal-to-noise ratio is discussed in [1 - 3]. It is interesting to note that for the low 

and the medium damping levels the acquisition time cannot be reduced in classical algorithms. 

Wrong selection of the acquisition time L  (or amplitudes 1A  and 1+nA ) leads to an increase in the 

computation error of of  (Fig. 3) and δ  (Figs. 1, 2). For high damping levels classical algorithms 

generate high dispersion in experimental points for too long acquisition time (see Fig. 3 d). This 

aspect of mechanical spectroscopy has received scant attention to date and deserves more. It can be 

concluded that the OMI algorithm can be successfully used to make high-precision measurements 

of the logarithmic decrement and the resonant frequency in high-damping materials (HDM).  

Conclusions 

The optimal strategy in the computations of the logarithmic decrement δ  and the resonant 

frequency of  for the high damping level is reduced to the selection of the computing algorithm. It 

is concluded that for the high damping level the OMI algorithm always yields the lowest relative 

error γ , and the lowest standard deviation σ  in the computations of the δ  and the of . It also 

yields the smallest dispersion of experimental points as compared to the classical methods. The 

OMI algorithm provides better detection of fine variations in the logarithmic decrement and the 

resonant frequency and allows fast and precise detection of huge variations in the resonant 

frequency and the logarithmic decrement observed during phase transformations and other 

mechanical loss phenomena observed in viscoelastic, viscoplastic and anelastic materials. 
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